Direct Electrochemistry with Nitrate Reductase in Chitosan Films

¹Department of Chemistry, Capital Normal University, Beijing 100037 ²Department of Chemistry, Beijing Normal University, Beijing 100875

Abstract: Stable films made from chitosan (CS) on pyrolytic graphite electrode (PGE) gave direct electrochemistry for incorporated enzyme nitrate reductase (NR). Cyclic voltammetry of CS / NR films showed a pair of well-defined and nearly reversible redox peaks at about -0.430 V *vs*. SCE at pH 7.0 phosphate buffers.

Keywords: Nitrate reductase, chitosan, cyclic voltammetry, chemical modified electrode.

Nitrate reductase (NR) is a homodimeric enzyme with each subunit containing a ~100kD polypeptide, and it contains three internally electroactive sites such as flavin adenine dinucleotide (FAD), heme-ion and molybdenum-molybdopterin (Mo-MPT)¹. In serves of plants, algae, and fungi it as a central point for integration of metabolism by governing flux of reduced nitrogen. NR catalyzes the first step of nitrate assimilation in all these organisms, which appears to be a rate-limiting process in acquisition of nitrogen in most case². In order to limit the strong adsorption of NR at the bare electrode, we prepared a chemical modified electrode, which may provide a unique microenvironment for electrode reaction and improve the electrochemical properties of NR. NR incorporated into CS films demonstrated to enhance electron transfer with underlying PGE. Direct electrochemical properties about CS / NR films cast on PGE surface was observed by cyclic voltammetry (CV).

NR and CS were from Sigma Co.. PGE was from Beijing Normal University, geometric area 0.159 cm^2 . The three-electrode cell featured SCE as a reference, a platinum flake as a counter and the modified electrode as the working electrode.

CS films were prepared by casting $10 \,\mu$ L of 1 mg/mL CS solution onto the PGE surface. After water was evaporated, $10 \,\mu$ L phosphate buffer in the presence of NR solution was cast onto CS / PG modified electrode³. In 0.1mol/L pH 7.0 buffer solutions, the CS / NR / PGE system showed a pair of well-defined, nearly reversible peaks at about -0.430 V (**Figure 1b**), but no voltammetric responses were observed at CS films electrode under the same condition (**Figure 1a**). There was a good linearity in peak current with scan rate from 0.01 to 0.5 V/s (**Figure 2**). The results are characteristics of thin-layer electrochemical behavior⁴. The pH of the solution strongly

^{*} E-mail: huiboshao@mail.china.com

affected the direct electron transfer of NR-CS films electrode. An increase of pH of solution led to a negative shift in potential for both reduction and oxidation peaks for CS / NR films (**Figure 3**). The formal potential had a linear relationship with pH between 2.0 to 10.0 with a slope of -56.6 mV/pH. The value is close to the theoretical value of -57.6 mV/pH for a reversible, one-proton coupled single electron transfer⁵.

Figure 3 CVs of the CS / NR / PGE at scan rate 0.1 V/s in 0.1mol/L different pH (5.0, 7.0, 9.0) phosphate buffers.

Acknowledgments

We are grateful to the NNSFC (29973026), BNSF (2992007) and Foundation for University Key Teacher by the Ministry of Education for the provision of financial support.

References

- 1. M. G.Redinbaugh, W. H.Campbell, J. Biol. Chem., 1985, 260, 3380.
- 2. W. H. Campbell, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1990, 50, 277.
- 3. J. F. Rusling, A. E. F. Nassar, J. Am. Chem. Soc., 1993, 115, 11891.
- 4. A. J. Bard (Ed.), *Electroanalytical Chemistry*, Marcel Dekker, New York, 1984, 13, 191.
- 5. L. Meites, Polarographic Techniques, 2nd edn. Wiley, New York, 1985.

Received 21 March, 2003